Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Nat Mater ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627527

ABSTRACT

Ion exchange is a powerful method to access metastable materials with advanced functionalities for energy storage applications. However, high concentrations and unfavourably large excesses of lithium are always used for synthesizing lithium cathodes from parent sodium material, and the reaction pathways remain elusive. Here, using layered oxides as model materials, we demonstrate that vacancy level and its corresponding lithium preference are critical in determining the accessible and inaccessible ion exchange pathways. Taking advantage of the strong lithium preference at the right vacancy level, we establish predictive compositional and structural evolution at extremely dilute and low excess lithium based on the phase equilibrium between Li0.94CoO2 and Na0.48CoO2. Such phase separation behaviour is general in both surface reaction-limited and diffusion-limited exchange conditions and is accomplished with the charge redistribution on transition metals. Guided by this understanding, we demonstrate the synthesis of NayCoO2 from the parent LixCoO2 and the synthesis of Li0.94CoO2 from NayCoO2 at 1-1,000 Li/Na (molar ratio) with an electrochemical assisted ion exchange method by mitigating the kinetic barriers. Our study opens new opportunities for ion exchange in predictive synthesis and separation applications.

2.
Genes Genomics ; 46(4): 389-398, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38381321

ABSTRACT

OBJECTIVE: Min pigs are a unique genetic resource among local pig breeds in China. They have more excellent characteristics in cold and stress resistance, good meat quality, and a high reproductive rate. However, the genetic structure and driving factors remain unclear in the nucleus herd. In this study, the genetic diversity of Min pigs was studied to reveal the formation mechanism of its unique genetic structure. We hope to protect and develop the genetic resources of Min pigs. METHODS: We analyzed different types of genes to identify the genetic structure and gene introgression pattern of Min pigs. The nuclear DNA dataset includes information on 21 microsatellite loci and 6 Y-chromosome genes, and the mitochondrial D-loop gene is selected to represent maternal lineages. The above genes are all from the nucleus herd of Min pigs. RESULTS: The results of genetic structure identification and analysis of potential exogenous gene introgression patterns indicate that the nucleus herd of Min pigs maintains a high level of genetic diversity (polymorphism information content = 0.713, expected heterozygosity = 0.662, observed heterozygosity = 0.612). Compared with other Asian pig breeds, the formation of Min pig breeds is more special. Gene introgression from European pig breeds to Min pigs has occurred, which is characterized by complete introgression of paternal genes and incomplete introgression of maternal genes. CONCLUSION: Gene introgression caused by cross-breeding is not the main factor leading to the formation of the current genetic structure of Min pigs, but this process has increased the level of genetic diversity in the nucleus herd. Compared with the influence of gene introgression, our research suggest that artificial selection and environmental adaptive evolution make Min pigs form unique genetic characteristics.


Subject(s)
Genetic Variation , Genetics, Population , Swine/genetics , Animals , Polymorphism, Genetic , Mitochondria/genetics , Heterozygote
3.
Environ Pollut ; 346: 123591, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38367696

ABSTRACT

This study developed an efficient and stable landfill leachate treatment process, which was based on the combination of biochar catalytic ozonation and activated sludge technology for intensive treatment of landfill leachate, aiming to achieve the standard discharge of leachate. The focus is to investigate the effect of manganese loading on the physicochemical properties of biochar and the mechanism of its catalytic ozonation. It was found that more surface functional groups (CO, Mn-O, etc.) and defects (ID/IG = 1.27) were exposed via the change of original carbon structure by loading Mn, which is conducive to the generation of lattice oxygen. Meanwhile, generating different valence states of Mn metal can improve the redox properties and electron migration rate, and encourage the production of reactive oxygen species (ROS) during the reaction process and enhance the catalytic efficiency. The synergistic action of microorganisms, especially denitrifying bacteria, was found to play a key role in the degradation of nitrogenous pollutants during the activated sludge process. The concentration of NH+4-N was reduced from the initial 1087.03 ± 9.56 mg/L to 9.05 ± 1.91 mg/L, while COD was reduced from 2290 ± 14.14 mg/L to 86.5 ± 2.12 mg/L, with corresponding removal rates of 99.17% and 99.20%, respectively. This method offers high efficiency and stability, achieving discharge standards for leachate (GB16889-2008). The synergy between Mn-loaded biochar and microorganisms in the activated sludge is key to effective treatment. This study offers a new approach to solving the challenge of waste leachate treatment.


Subject(s)
Charcoal , Ozone , Water Pollutants, Chemical , Ozone/chemistry , Manganese , Water Pollutants, Chemical/chemistry , Sewage
4.
Chem Commun (Camb) ; 59(83): 12487-12490, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37786313

ABSTRACT

Supramolecular carrier-mediated chemotherapy is a highly attractive strategy for targeted drug delivery. In this study, four novel biotin-linked calix[4]arenes BPCA1-BPCA4 have been rationally designed to construct nano-complex with doxorubicin. The in vitro and in vivo assessments reveal that BPCA4-DOX with excellent stability are capable of affording significantly superior anti-tumor activity and lower side effects.


Subject(s)
Calixarenes , Micelles , Biotin , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Carriers , Cell Line, Tumor
5.
J Hazard Mater ; 459: 132118, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37494792

ABSTRACT

In this study, biochar was produced based on dehydrated excess sludge from the municipal wastewater treatment plant, which was used for catalytic ozonation of pollutants derived from landfill leachate. The necessary catalytic sites in the structure of biochar were originated from the inorganic metals and organic matters in the sludge, which included a large number of functional groups (e.g., C-C, CO, etc.), adsorbed oxygen (Oads accounted for 44.82%) and electron defects (ID/IG=1.01). These active sites could promote the generation of reactive oxygen species (ROS) (e.g., ·OH,·O2-, etc.). The synergistic interaction between the microorganisms in the activated sludge also facilitated the removal rates of pollutants. Proteobacteria, Bacteroidetes, and Deinococcu-Thermus were crucial in the bioreactor. In 16 days of reaction, the removal ratios of NH+4-N and COD were 98.95 ± 0.11% and 90.89 ± 0.47%, respectively. This study not only explains the mechanism of catalytic ozonation of biochar, but also provides a new way of the practical treatment of landfill leachate.


Subject(s)
Ozone , Water Pollutants, Chemical , Sewage/chemistry , Water Pollutants, Chemical/chemistry , Ozone/chemistry , Charcoal , Oxygen
6.
Environ Sci Pollut Res Int ; 30(20): 59027-59047, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37000396

ABSTRACT

The excess sludge from municipal sewage treatment plants is rich in Fe (III) due to chemical dephosphorization. The activation of peroxymonosulfate (PMS) by biochar derived from anaerobic and aerobic iron-containing excess sludge was studied systematically in this research. Fe (III)-containing excess sludge was cultured in an anaerobic environment for conversion of partial Fe (III) to Fe (II), which was further carbonized to prepare biochar labeled AnSx@Fe. Meanwhile, aerobic sludge with different Fe (III) content was directly carbonized to produce biochar labeled AeS@Fe. For biochar (AnS20@Fe-15%) prepared from 15% Fe(III)-containing anaerobic cultured 20 days sludge, the relative contents of Fe (III) and Fe (II) were 21.26% and 78.74%, which were 31.03% and 68.97% for biochar (AeS@Fe-10%) prepared from 10% Fe (III)-containing aerobic sludge. Fe (III) can be reduced to Fe (II) by both anaerobic culture and carbonization. Their removal rates of tetracycline (TC) through 60 min PMS activation were 97% and 98%, with TOC (Total organic carbon) removal of 61.8% and 53.4% respectively. The reactive species including sulfate radical [Formula: see text], hydroxyl radical (·OH) and singlet oxygen (1O2) were produced during PMS activation. After O2-aeration treatment of both AeS@Fe and AnSx@Fe, the relative content of Fe (II) was decreased and group C = O was disappeared, which resulted in reduction of [Formula: see text], ·OH and 1O2. The generation of [Formula: see text] and ·OH was dominated by the Fe (II) activation and the 1O2 generation was originated from graphite type N and C = O. Direct carbonization of aerobic and anaerobic sludge is a feasible method to produce biochar for PMS activation.


Subject(s)
Iron , Sewage , Iron/chemistry , Anaerobiosis , Peroxides/chemistry , Charcoal
7.
Nat Methods ; 20(3): 459-468, 2023 03.
Article in English | MEDLINE | ID: mdl-36823335

ABSTRACT

Single-molecule localization microscopy in a typical wide-field setup has been widely used for investigating subcellular structures with super resolution; however, field-dependent aberrations restrict the field of view (FOV) to only tens of micrometers. Here, we present a deep-learning method for precise localization of spatially variant point emitters (FD-DeepLoc) over a large FOV covering the full chip of a modern sCMOS camera. Using a graphic processing unit-based vectorial point spread function (PSF) fitter, we can fast and accurately model the spatially variant PSF of a high numerical aperture objective in the entire FOV. Combined with deformable mirror-based optimal PSF engineering, we demonstrate high-accuracy three-dimensional single-molecule localization microscopy over a volume of ~180 × 180 × 5 µm3, allowing us to image mitochondria and nuclear pore complexes in entire cells in a single imaging cycle without hardware scanning; a 100-fold increase in throughput compared to the state of the art.


Subject(s)
Deep Learning , Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods
8.
Chemosphere ; 312(Pt 2): 137193, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370766

ABSTRACT

Clean water shortages require the reuse of wastewater. The presence of organic substances such as humic acids in wastewater makes the water treatment process more difficult. Humic acids can significantly affect the removal of heavy metals and other such toxins. Humic acids is formed by the decomposition and transformation of animal and plant remains by microorganisms, and naturally exists in soil and water. It is necessary to degrade and remove humic acids from wastewater. As it seriously human health, effective technologies for removing humic acids from wastewater have attracted great interest over the past decades. This study compared existing techniques for removing humic acids from wastewater, as well as their limitations. Physicochemical treatments including filtration and oxidation are basic and key approaches to removing humic acids. Biological treatments including enzyme and fungi-mediated humic acids degradation are economically feasible but require some scalability. In conclusion, the integrated treatment processes are more significant options for the effective removal of humic acids from wastewater. In addition, humic acids have rich utilization values. It can improve the soil, increase crop yields, and promote the removal of pollutants.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Purification , Humic Substances/analysis , Soil/chemistry , Wastewater , Water Pollutants, Chemical/metabolism , Water Purification/methods
10.
Bioresour Technol ; 361: 127668, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35878770

ABSTRACT

This study adopted the combination of activated sludge treatment and catalytic ozonation technology to efficiently remove the high concentration of ammonia nitrogen from landfill leachate. Through optimizing the parameters continuously, the COD, NH4+-N, UV254 and colority respectively descended to 417.75 ± 6.72 mg/L, 9.77 mg/L, 1.98 ± 0.04 and 40 times, and 3D fluorescence also reduced significantly within 14 days. Target genes of AOB-amoA, nxrA, napA, nirS and nosZ analysis indicated that ammonia-oxidizing bacteria, nitrated bacteria, and denitrifying bacteria played a key role on nitrogen removal, aerobic denitrifying bacteria was dominated especially. The nitrogen removal process was as follows: catalytic ozonation converted nitrogen-containing organic matter into NH4+-N, then NH4+-N was converted into NO2--N and NO3--N with the action of ammonia oxidation, nitrification and catalytic ozonation. Finally, the denitrification microorganisms transformed NO3--N or NO2--N to N2. Therefore, this coupled process realized the nitrogen removal effectively from landfill leachate.


Subject(s)
Ozone , Water Pollutants, Chemical , Ammonia , Bioreactors/microbiology , Denitrification , Nitrification , Nitrogen , Nitrogen Dioxide , Oxidation-Reduction , Sewage
11.
Sci Total Environ ; 813: 152397, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34923007

ABSTRACT

The generation of free radicals is the key to the photocatalytic efficiency. In this study, the degradation mechanism of photoelectrocatalysis (PEC) membrane could be adequately explained by exploring the generation pathway of different free radicals. The PEC membrane was prepared by gas phase polymerization of poly (3, 4-ethylene dioxythiophene) (PEDOT) on non-woven fabric, industrial filter cloth, ceramic membrane and polyvinylidene fluoride (PVDF) membrane, respectively. Three-dimensional fluorescence test showed that the optimal degradation of mixed or monomer contamination (bovine serum protein, sodium humate, and sodium alginate) was achieved by modified ceramic membrane under PEC condition. As for self-cleaning experiment, the membrane resistance decreased 65.7% when the reaction conditions changed from dark to PEC for 30 min. Combined with the characterization results, PEDOT as photocapacitance extended electron lifetime and promoted free radical generation. This system was mainly dependent on superoxide free radicals (0.01 mmol/L) and singlet oxygen (0.10 mmol/L), which came from energy and electron transfer. Oxygen vacancy could adsorb oxygen to produce superoxide radicals, which was further oxidized to singlet oxygen. In addition, the π-electron conjugated system of PEDOT accelerated the hole transfer and the separation of electrons and holes. Also, this study provided a new view of reactive oxygen species generation mechanism from PEDOT modified membrane.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Polymers , Free Radicals , Oxidation-Reduction
12.
Sci Total Environ ; 794: 148557, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34323762

ABSTRACT

In order to treat the high concentration landfill leachate, ozone direct oxidation pretreatment and catalytic oxidation post-treatment coupled with anaerobic baffled membrane bioreactor (ABMBR) system was proposed in this study. For pretreatment, ozone direct oxidation could remarkably reduce UV254, 3D fluorescence peak value and fluorescence regional integration (FRI) of organic pollutants. For ABMBR treatment, the removal efficiencies of COD and ammonia nitrogen were 80.38% and 21.56%, respectively. Post-treatment included struvite precipitation, ozone catalytic oxidation and membrane bioreactor (MBR) treatment. Finally, the total removal efficiencies of COD and ammonia nitrogen were 91.2% and 99.4%, respectively. The chroma was remarkably decreased from 1250 times to 40 times after a series of treatments. The acids in ABMBR could be degraded by microorganisms of Proteobacteria and Chloroflexi. The cellulose and polysaccharides could be decomposed by Bacteroidetes and ketones could be decomposed by Brevundimonas in ABMBR. Electron paramagnetic resonance (EPR) analysis indicated that the hydroxyl radicals were the main reactive oxygen species during the direct ozone oxidation process, while the superoxide radicals played an important role in the ozone catalytic oxidation process.


Subject(s)
Ozone , Water Pollutants, Chemical , Bioreactors , Catalysis , Oxidation-Reduction , Water Pollutants, Chemical/analysis
13.
Nanomicro Lett ; 13(1): 117, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-34138363

ABSTRACT

For traditional piezoelectric sensors based on poled ceramics, a low curie temperature (Tc) is a fatal flaw due to the depolarization phenomenon. However, in this study, we find the low Tc would be a benefit for flexible piezoelectric sensors because small alterations of force trigger large changes in polarization. BaTi0.88Sn0.12O3 (BTS) with high piezoelectric coefficient and low Tc close to human body temperature is taken as an example for materials of this kind. Continuous piezoelectric BTS films were deposited on the flexible glass fiber fabrics (GFF), self-powered sensors based on the ultra-thin, superflexible, and polarization-free BTS-GFF/PVDF composite piezoelectric films are used for human motion sensing. In the low force region (1-9 N), the sensors have the outstanding performance with voltage sensitivity of 1.23 V N-1 and current sensitivity of 41.0 nA N-1. The BTS-GFF/PVDF sensors can be used to detect the tiny forces of falling water drops, finger joint motion, tiny surface deformation, and fatigue driving with high sensitivity. This work provides a new paradigm for the preparation of superflexible, highly sensitive and wearable self-powered piezoelectric sensors, and this kind of sensors will have a broad application prospect in the fields of medical rehabilitation, human motion monitoring, and intelligent robot.

14.
Nature ; 591(7849): 322-326, 2021 03.
Article in English | MEDLINE | ID: mdl-33658714

ABSTRACT

The RNA modification N6-methyladenosine (m6A) has critical roles in many biological processes1,2. However, the function of m6A in the early phase of mammalian development remains poorly understood. Here we show that the m6A reader YT521-B homology-domain-containing protein 1 (YTHDC1) is required for the maintenance of mouse embryonic stem (ES) cells in an m6A-dependent manner, and that its deletion initiates cellular reprogramming to a 2C-like state. Mechanistically, YTHDC1 binds to the transcripts of retrotransposons (such as intracisternal A particles, ERVK and LINE1) in mouse ES cells and its depletion results in the reactivation of these silenced retrotransposons, accompanied by a global decrease in SETDB1-mediated trimethylation at lysine 9 of histone H3 (H3K9me3). We further demonstrate that YTHDC1 and its target m6A RNAs act upstream of SETDB1 to repress retrotransposons and Dux, the master inducer of the two-cell stage (2C)-like program. This study reveals an essential role for m6A RNA and YTHDC1 in chromatin modification and retrotransposon repression.


Subject(s)
Adenosine/analogs & derivatives , Gene Silencing , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , RNA/genetics , Retroelements/genetics , Adenosine/metabolism , Animals , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/metabolism , Male , Mice , RNA/chemistry , RNA/metabolism , Repressor Proteins/metabolism
15.
Bioresour Technol ; 319: 124259, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33254472

ABSTRACT

Excess sludge was considered as a promising raw material for phosphorus recovery. In this study, the P-Fe containing sludge came from the aerobic membrane bioreactor with electrocoagulation (EC), which was refluxed to the anaerobic unit for iron reduction. Under anaerobic condition, the ORP and pH maintained at -350 mV and 7.5, which exactly met the conditions for vivianite formation. According to the analysis of X-ray polycrystalline diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), the final product of the sludge after anaerobic condition was mainly vivianite. Microbial analysis showed that there were iron reducing bacteria (IRB) in sludge before and after anaerobic process, including Dechloromonas, Desulfovibrio. Aeromonas and Methanobacterium. During the transition process of aerobic and anaerobic conditions, amorphous phosphate substances in P-Fe containing sludge could be transformed vivianite just with long term standing, which could promote the recovery of phosphate resource from wastewater.


Subject(s)
Phosphates , Sewage , Anaerobiosis , Bioreactors , Ferrous Compounds , Waste Disposal, Fluid , Wastewater
17.
Eur J Med Chem ; 210: 112984, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33183867

ABSTRACT

Calixarenes, with potential functionalization on the upper and lower rim, have been explored in recent years for the design and construction of anticancer agents in the field of drugs and pharmaceuticals. Herein, optimization of bis [N-(2-hydroxyethyl) aminocarbonylmethoxyl substituted calix [4] arene (CLX-4) using structure-based drug design and traditional medicinal chemistry led to the discovery of series of calix [4]arene carbonyl amide derivatives 5a-5t. Evaluation of the cytotoxicity of 5a-5t employing MTT assay in MCF-7, MDA-MB-231 (human breast cancer cells), HT29 (human colon carcinoma cells), HepG2 (human hepatocellular carcinoma cells), A549 (human lung adenocarcinoma cells) and HUVEC (Human Umbilical Vein Endothelial) cells demonstrated that the most promising compound 5h displayed the most superior inhibitory effect against A549 and MDA-MB-231 cells, which were 3.2 times and 6.8 times of CLX-4, respectively. In addition, the cell inhibition rate (at 10 µM) against normal HUVEC cells in vitro was only 9.6%, indicating the safty of compound 5h. Moreover, compound 5h could inhibit the migration of MDA-MB-231 cell in wound healing assay. Further mechanism studies significantly indicated that compound 5h could block MDA-MB-231 cell cycle arrest in G0/G1 phase by down regulating cyclin D1 and CDK4, and induce apoptosis by up-regulation of Bax, down-regulation of Caspase-3, PARP and Bcl-2 proteins, resulting in the reduction of DNA synthesis and cell division arrest. This work provides worthy of further exploration for the promising calixarene-based anticancer drugs.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Calixarenes/pharmacology , Drug Design , Phenols/pharmacology , Amides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Calixarenes/chemical synthesis , Calixarenes/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phenols/chemical synthesis , Phenols/chemistry , Structure-Activity Relationship , Wound Healing/drug effects
18.
Gland Surg ; 9(5): 1415-1427, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33224817

ABSTRACT

BACKGROUND: This retrospective analysis was designed to research whether clinical response partial response (PR)/complete response (CR) and pathological response (PCR) to neoadjuvant chemotherapy can translate into prognosis benefit pathological response in patients with locally advanced breast cancer and whether different chemotherapy regimens will influence the outcomes. METHODS: One hundred and thirty-five patients with breast cancer patients who received neoadjuvant chemotherapy were included in the retrospective analysis. Patients were followed up strictly. Overall survival (OS) was evaluated by the Kaplan-Meier analysis. The comparison of the clinical and pathological characteristics and recurrence was performed using the carried out by chi-squared and Fisher's exact tests. Univariate and multivariate analyses were performed by the Cox regression analysis. RESULTS: Clinical response was strongly correlated with lymph nodes status (P=0.032). The OS comparison of pathological response between the pCR group and non-pCR groups did not exhibit statistically significant differences (P=0.400). A similar non-significant response result was observed in the comparison of clinical response between the PR/CR and SD/PD groups group (P=0.108). Univariate and multivariate analyses did not support clinical response (P=0.156 P=0.095 respectively) or pathological response (P=0.600 P=0.144 respectively) as the predictors of prognosis. There were no significant differences in either the comparison of the clinical response group it seems no statistically significance (P=0.496) or the comparison of the pathological response group (P=0.460). OS analyses across different neoadjuvant chemotherapy regimens demonstrated no significant differences (P=0.307). In the PR/CR and PD/SD comparison of every single regimen, there were no significant differences. However, for patients with PR/CR patients from the comparison of five regimens, namely, TAC, FAC, AC-T, AT and TCBP demonstrated a significant difference (P=0.022). In the group of patients with luminal A breast cancer, the result of the Fisher's exact test approached significant (P=0.059). CONCLUSIONS: Neither PR/CR nor pCR can translate into long-term outcome benefit. PR/CR and PCR are not independent predictors in patients with advanced breast cancer. Patients who received a taxane + anthracycline regimen exhibited a higher recurrence rate than any other regimens, especially those patients with luminal A breast cancer.

19.
Cell Rep ; 32(10): 108120, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32905781

ABSTRACT

N6-methyladenosine (m6A), the most abundant reversible modification on eukaryote messenger RNA, is recognized by a series of readers, including the YT521-B homology domain family (YTHDF) proteins, which are coupled to perform physiological functions. Here, we report that YTHDF2 and YTHDF3, but not YTHDF1, are required for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Mechanistically, we found that YTHDF3 recruits the PAN2-PAN3 deadenylase complex and conduces to reprogramming by promoting mRNA clearance of somatic genes, including Tead2 and Tgfb1, which parallels the activity of the YTHDF2-CCR4-NOT deadenylase complex. Ythdf2/3 deficiency represses mesenchymal-to-epithelial transition (MET) and chromatin silencing at loci containing the TEAD motif, contributing to decreased reprogramming efficiency. Moreover, RNA interference of Tgfb1 or the Hippo signaling effectors Yap1, Taz, and Tead2 rescues Ythdf2/3-defective reprogramming. Overall, YTHDF2/3 couples RNA deadenylation and regulation with the clearance of somatic genes and provides insights into iPSC reprogramming at the posttranscriptional level.


Subject(s)
RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Cellular Reprogramming/physiology , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , RNA, Messenger/genetics , RNA-Binding Proteins/genetics
20.
Cell Rep ; 30(1): 25-36.e6, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31914391

ABSTRACT

Known as a histone H3K9 methyltransferase, SETDB1 is essential for embryonic development and pluripotent inner cell mass (ICM) establishment. However, its function in pluripotency regulation remains elusive. In this study, we find that under the "ground state" of pluripotency with two inhibitors (2i) of the MEK and GSK3 pathways, Setdb1-knockout fails to induce trophectoderm (TE) differentiation as in serum/LIF (SL), indicating that TE fate restriction is not the direct target of SETDB1. In both conditions, Setdb1-knockout activates a group of genes targeted by SETDB1-mediated H3K9 methylation, including Dux. Notably, Dux is indispensable for the reactivation of 2C-like state genes upon Setdb1 deficiency, delineating the mechanistic role of SETDB1 in totipotency restriction. Furthermore, Setdb1-null ESCs maintain pluripotent marker (e.g., Nanog) expression in the 2i condition. This "ground state" Setdb1-null population undergoes rapid cell death by activating Ripk3 and, subsequently, RIPK1/RIPK3-dependent necroptosis. These results reveal the essential role of Setdb1 between totipotency and pluripotency transition.


Subject(s)
Cell Lineage , Histone-Lysine N-Methyltransferase/metabolism , Pluripotent Stem Cells/metabolism , Trophoblasts/metabolism , Animals , Cell Differentiation , Cells, Cultured , Ectoderm/metabolism , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Nanog Homeobox Protein/metabolism , Necroptosis , Pluripotent Stem Cells/cytology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Totipotent Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...